F.4 A maths binomial

2006-12-06 6:42 am
given that (a+b)^4 - 4ab(a+b)^2 +2a^2*b^2=a^4+b^4.

and ais a positive number and b is a negative number satisfying a + b =1
and a^4+b^4 =97 .
using the result, show that ab = -6.

Hence , find the values of a and b.

回答 (4)

2006-12-06 6:47 am
✔ 最佳答案
since a+b = 1 and a^4+b^4 = 97, from the given,
(1)^4 - 4ab(1)² +2a²*b² = 97
1 - 4ab + 2(ab)² = 97
2(ab)² - 4(ab) - 96 = 0
(ab)² - 2(ab) - 48 = 0
(ab-8)(ab+6) = 0
ab = 8 (Rejected since a>0 and b<0 and so ab<0) or ab = -6
So, ab = -6

a = -6/b
Put into a + b = 1,
-6/b + b = 1
-6 + b² = b
b² - b - 6 = 0
(b-3)(b+2) = 0
b = 3 (Rejected since b<0) or b = -2
So b = -2
a = -6/(-2) = 3


Hope it helps! ^^
參考: Myself
2006-12-06 7:11 am
a + b = 1----------(1)
a^4 + b^4 = 97------------(2)
(a+b)^4 - 4ab(a+b)² +2a²b² = a^4+b^4
(a+b)^4 - 4ab(a+b)² +2(ab)² = 97
(1)^4 - 4ab(1)² + 2(ab)² = 97
1 - 4ab + 2(ab)² = 97
2(ab)² - 4ab - 96 = 0
(ab)² - 2ab - 48 = 0
(ab-8)(ab+6) = 0
ab = 8 (rejected) or ab = -6
∴ ab = -6
a + b = 1----------(1)
a^4 + b^4 = 97------------(2)
ab = -6---------------(3)
From(1),a = 1 - b
Subs a = 1 - b into (3)
(1-b)b = -6
b - b² + 6 = 0
b² - b - 6 = 0
(b-3)(b+2)=0
b = 3 (rejected) or b = -2
When b = -2 , a = 3
2006-12-06 6:48 am
(a+b)^4 - 4ab(a+b)^2 +2a^2*b^2=a^4+b^4
1 -4ab*1^2+2(ab)^2=97
2(ab)^2-4ab-96=0
x^2-2x-48=0 such that x=ab
x =-6 or 8(rej) as a is a positive number and b is a negative number
a=3,b=-2 as ab=-6 ,a+b =1
參考: ME
2006-12-06 6:48 am
Put a^4+b^4 =97 and a + b =1 into
(a+b)^4 - 4ab(a+b)^2 +2a^2*b^2=a^4+b^4
1-4ab+2(ab)^2=97
(ab)^2 -2ab -48=0
(ab-8)(ab+6)=0
ab=-6 (rej, ab=8 because a>0 and b<0)

put b=-6/a into a+b=1
a-6/a=1
a^2-a-6=0
(a-3)(a+2)=0
a=3 (rej. a=-2 as a>0)

Hence b=-6/3=-2


收錄日期: 2021-04-12 21:22:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061205000051KK05016

檢視 Wayback Machine 備份