數學題....

2006-12-05 2:49 am
棱錐 VABCD 的底 ABCD 是一個長方形,其中 AC=32cm BC=24cm VC=26cm

:::::棱錐 VABCD 四面都是三角形 底 ABCD係長方形

a)求棱錐的高 VE

b)求長方形 ABCD 的面積

c)求棱錐的體積

(答案須準確至三位有效數字)

回答 (2)

2006-12-05 3:18 am
✔ 最佳答案
M為BC的中點
VE=√(VC²-EC²)
=√(676-256)
=√420
=2√105
=20.5cm

AB=√(AC²-BC²)
=√(1024-576)
=√448
=8√7
=21.2cm

ABCD的面積
=AB x BC
=21.2 x 24
=509cm²

棱錐的體積
=ABCD的面積 x 高VE
=509 x 20.5
=10400cm³

All the answer above are correct to 3 significant figures
2006-12-15 12:30 am
a. △VEC: VE² = VC² + EC²
      VE² = VC² - (1/2 AC)²
      VE² = 676 - 256
      VE = √420 = 20.5 [準確至三位有效數字]
b. △ABC: AB² = AC² - BC²
      AB² = 1024 - 576
      AB = √448
 長方形 ABCD 的面積 = AB * BC
           = (√448 ) * 24
           = 96 √28 = 508 [準確至三位有效數字]
c. 棱錐的體積 = 1/3 * 高 * 底面積
       = 1/3 * (√420) * (96 √28)
       = 3470 [準確至三位有效數字]

2006-12-14 16:37:26 補充:
樓上的朋友犯了兩個錯誤:1. 有效數字應該只應用於最後的答案,過早使用會令答案值誤差增大。 所以面積計算比正確數字大了。2. 錐體的體積為 1/3 * 高 * 底面積 (您誤用了計算立方體的體積方程式)

2006-12-19 22:58:01 補充:
又一個錯誤答案獲選的例子! ~"~


收錄日期: 2021-04-18 20:22:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061204000051KK03015

檢視 Wayback Machine 備份