請教因式分解
請教因式分解數條(詳細回答)
1.x^2-(y+z)^2(運用恆等式)
2.(2x)^2-(5y)^2(運用恆等式)
3.16s^2-t^2-8s+2t
4.x^4-1
(並不是問家課,只是有這種題目形式不理解^^")
回答 (3)
✔ 最佳答案
1.x^2-(y+z)^2(運用恆等式)
=(x-y-z)(x+y+z)
注意:用a^2-b^2=(a+b)(a-b)
(2x)^2-(5y)^2
=(2x+5y)(2x-5y)
注意:用a^2-b^2=(a+b)(a-b)
3.16s^2-t^2-8s+2t
=(4s)^2-t^2-8s+2t
=(4s-t)(4s+t)-2(4s-t)
=(4s-t)(4s+t-2)
4.x^4-1
=(x^2)^2-(1)^2
=(x^2+1)(x^2-1)
=(x^2+1)(x-1)(x+1)
注意:用a^2-b^2=(a+b)(a-b)
a^2-b^2 =(a+b)(a-b)
1.x^2-(y+z)^2(運用恆等式)
a=x, b=y+z
x^2-(y+z)^2
=[x+(y+z)][x-(y+z)]
=(x+y+z)(x-y-z)
2.(2x)^2-(5y)^2(運用恆等式)
a=2x, b=5y
(2x)^2-(5y)^2
=(2x+5y)(2x-5y)
3.16s^2-t^2-8s+2t
For 16s^2-t^2
a^2=(4s)^2, b^2=t^2
16s^2-t^2-8s+2t
=(4s+t)(4s-t)-2(4s-t)
=(4s-t)(4s+t-2)
4.x^4-1
a^2=x^4=(x^2)^2
b^2 = 1^2
x^4-1
=(x^2+1)(x^2-1)
For (x^2-1)
a=x, b=1
x^4-1
=(x^2+1)(x^2-1)
=(x^2+1)(x+1)(x-1)
=(x+1)(x-1)(x^2+1)
1) (x+y+z)[x-(y+z)]
=(x+y+z)(x-y-z)
2) (2x+5y)(2x-5y)
3) 8s[2s-1]-t[t-2]
4) (x^2+1)(x^2-1)
=(x^2+1)(x+1)(x-1)
收錄日期: 2021-04-12 22:32:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061202000051KK03228
檢視 Wayback Machine 備份