✔ 最佳答案
a )let T(n) = 7n
for 7n>=200 the smallest n = 29 T(29)=203
for 7n<=500 the largest n =71 T(71)=497
因此between 200 to 500,能被7整除的項數共 71-29+1=43
項差=7,首項=203,尾項=497
所以總和=(首項+尾項)x項差/2=(203+497)x43/2=15050
b)總和(可被5及7整除)=總和(可被5整除)+總和(可被7整除)-總和(可被35整除)
for 5n>=200 the smallest n=40 T(40)=200
for 5n<=500 the largest n=100 T(100)=500
then 項數=100 -40+1 =61
總和(可被5整除)=(200+500)x61/2=21350
for 35n>=200, the smallest n =6 T(6)=210
for 35n<=500, the largest n=14 T(14)=490
then 項數=14-6+1=9
總和(可被35整除)=(210+490)x9/2=3150
therefore 總和(可被5及7整除)=15050+21350-3150=33250
2006-11-28 16:44:16 補充:
我將你(....及....)的意思看作or,若是and,答案就是總和(可被35整除)=3150