function d數  2

2006-11-28 11:24 pm
a toy company produces q units of dolls everydday. the daily cost and the price equations are c(q)=200q+7500 and p(q)=-4q+960 respectively. calculate the followings:
(A) the practical range of q. (b) the maximum revenue. (c) the level of production in which maximum profit can be obtained. (d) the corresponding price and profit for the levels of production in (c).

回答 (2)

2006-11-29 7:41 am
✔ 最佳答案
Let a(q) be the profit of the company
Then a(q)=qp(q)-c(q)
=q(-4q+960)-200q-7500
=-4q^2 +760q-7500
a) The practical value of q
咁乜野叫做practical value呢,我諗間間公司都係諗住要賺錢架啦,蝕錢就唔會去做,所以應該係有利潤
即係話profit要大過0
咁即係a(q)大過0
即係-4q^2 +760q-7500大過0
q^2 -190q+1875細過0 (兩邊除負數就大過變細過, 相反亦然)

[190-{190^2 -4(1875)}]/2 細過 q 細過 [190+{190^2 -4(1875)}] {}係平方根
[190-{36100-7500}]/2 細過 q 細過 [190+{36100-7500}]/2
10.44 細過 q 細過 179.56

咁doll就一定係integer啦

所以 11 細過 q 細過 179 就應該係practical value啦

呢題其實唔係十分肯定,但應該係岩既

b) Let r(q) be the revenue
the revenue = r(q) = qp(q)
= q(-4q+960)
= -4q^2 +960q
求佢既最大值,咁就要d一d佢
dr(q)/dq = -8q+960
當 dr(q)/dq = -8q+960 = 0 個時就係最大or最細
q=120
Check埋佢係最大定最細,就要d多次
d^2 r(q)/dq = -8 即係最大 (曲面向下)

咁所以maximum revenue就會得到when q=120
咁放返落去r(q)度就即係 r(120)=-4(120)^2+960(120)
=57600
So, maximum revenue = 57600

c)求maximum profit 就即係好似b part既方法, 不過就d a(q)
da(q)/dq = -8q+760
當da(q)/dq = -8q+760 =0 個時就係最大or最細
咁q=95
Check埋佢係最大定最細,就要d多次
d^2 r(q)/dq = -8 即係最大 (曲面向下)
咁所以 95 is the level of production in which maximum profit can be obtained.

d)咁做到上面既答案,呢一part就唔會有太大既難度啦
求price就即係求p(q)
咁當q=95時, p(95)=-4(95)+960=580
So, the corresponding price is 580 for the levels of production in (c).
到profit就緊係求a(q)啦
咁當q=95時, a(95)=-4(95)^2 +760(95)-7500
=28600
So, the corresponding profit is 28600 for the levels of production in (c).
參考: 自己
2006-11-29 3:18 am
(A) the practical range of q.
q>=0
c(q)=200q+7500 >= 0 (OK!)
p(q)=-4q+960 (no need to set the restriction >=0, negative means you give others as free gift)
(b) the maximum revenue.
revenue
= price * q
= (-4q + 960)*q
= -4q^2 + 960q
= 57600 - 57600 + 960q - 4q^2..........(completing square method!)
= 57600 - (240 - 2q)^2
The max. revenue is attained when 240-2q = 0. So, q=120.
The max. revenue is 57600.
(c) the level of production in which maximum profit can be obtained.
the level of production = 120.
(d) the corresponding price and profit for the levels of production in (c).
The corresponding price
=-4*120+960=480
The profit
= revenue-cost
=57600 - [200(120)+7500]
=26100


收錄日期: 2021-04-12 22:31:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061128000051KK01746

檢視 Wayback Machine 備份