~~質數整除問題~~

2006-11-27 6:28 am
設有一個不小於 7 的質數 p .
試證: 111...111 ( p-1 個‘1’) 必能被 p 整除。

回答 (2)

2006-11-27 6:41 am
✔ 最佳答案
易知111...111 ( p-1 個‘1’) =(10^(p-1)-1)/9
由於p不小於 7,即p不會是2或5,又即p和10互質,由費馬小定理可知10^(p-1)除p餘1,所以(10^(p-1)-1)被p整除,而且p不會是3,所以把(10^(p-1)-1)除以9不影響它被p的整除性,所以命題成立。

註:費馬小定理即當p是質數且a和p互質時,(a^(p-1))-1可被p整除
2006-11-27 7:05 am
Let be the equivalent class of k mod p ,
then Fp = { <0> , <1> , <2> , ... , , } is a finite field of order p
and Rp = { <1> , <2> , ... , , } is a multiplicative ring of order p-1.
Since p>11 , <10> is well-defined and <1> is not equal to <10>.
Now, < 111...111 > = <10>^(p-2) +... + <10>^2 + <1> = <0> because
1) Every elements in Rp\{ <0> , <1> } are of order p-1 and hence
2) <10>^(p-2) ,... , <10>^2 and <1> are just p-1 distinct " non-zero " elements in Rp and hence in Fp.
3) Sum of all " non-zero " elements in Fp is equal to <0>.

Since <1 11...111 > = <0> , p must divide 111...111

2006-11-26 23:07:42 補充:
Hi-ya, not fast enough........

2006-11-30 15:31:45 補充:
SORRY" Let < k > be the equivalent class of k mod p , "


收錄日期: 2021-04-26 11:57:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061126000051KK06334

檢視 Wayback Machine 備份