✔ 最佳答案
我加上了括號使題目更易了解,希望我理解沒錯。
1. please make m be the subject of the formula where m and n are positive.
(m+n)/(2m+n) = m/n
n(m+n) = m(2m+n)
mn + n² = 2m² + mn
2m² = n²
m² = n²/2
m = √(n²/2)
m = n/√2
========================================
2. 2b/(a-b)(a+b) + 2a/a²+ab + b²/b-a = ?
2b/(a-b)(a+b) + 2a/(a²+ab) + b²/(b-a)
= 2b/(a-b)(a+b) + 2a/[a(a+b)] - b²/(a-b)
= 2b/(a-b)(a+b) + 2/(a+b) - b²/(a-b)
= 2b/(a+b)(a-b) + 2(a-b)/[(a+b)(a-b)] - b²(a+b)/[(a+b)(a-b)]
= [2b + 2(a-b) - b²(a+b)] / [(a+b)(a-b)]
= [2b + 2a - 2b - b²(a+b)] / [(a+b)(a-b)]
= (2a - ab² - b³) / [(a+b)(a-b)]
2006-11-26 16:38:19 補充:
小小補充:第一條題目中,因為 m 和 n 都不是 0,所以應用了交差相乘。第二條題目中,首先將三項都通份母為 (a+b)(a-b),再將分子展開化簡,就能得到答案。希望幫到你。