咩係畢氏定理!!!!!!~快快快[[No English]] 10 fun ar!!!!!!!

2006-11-24 7:14 pm
如題Thx....^_^

回答 (5)

2006-11-25 9:44 pm
✔ 最佳答案
畢氏定理可從COSINE LAW計到
In cosine law, we know,

(a^2)=(b^2)+(c^2)-2(b)(c)(cosA)
(a^2)=(b^2)+(c^2)-2(b)(c)(cos90)
(a^2)=(b^2)+(c^2)-2(b)(c)(0)
(a^2)=(b^2)+(c^2) <------------畢氏定理
畢式定理是由畢達哥拉斯發現的,在中國也有人發現,又稱商高定理,商高定理是指直角三角形的2股平方和=斜邊的平方   等腰三角形三邊比是1:1:根號2

在中國的古書中,畢氏定理又被稱為「勾股弦定理」。「勾股弦」這三個字是從正三角三個邊的名字而來:「勾」是較短的股;「股」是較長的股;而「弦」指的是斜邊。中國的勾股法是被用來發現 天文和測量地理。根據另外一本具象徵性 的古中國數學經典─周髀算經的記載, 早在中國朝代的初期(約西元前2100年), 中國數學家就給了勾股弦定理中3-4-5 三角形這個特例證明。 在九章算數的「勾股章」中,共有24個問題,被分為兩部分,第一部分著重在以勾股弦定理為中心,有關直角三角形的運算,而第二部分是勾股測量的相關問題。在劉輝為九章算數所作的注中,清楚的記載勾股從容補理論到比例理論的發展過程,而且完整又嚴格地解釋勾股弦定理的理論系統。以下將著重在劉輝所提出勾股弦定理的證明。 劉輝利用一個已知兩股為3,4的直角三角形,欲求其斜邊長的題目為引導,進而一般化且證明了勾股弦定理。他的證明大致如下: (1) 選擇一任意直角三角形 (2) 製造兩個邊長各是勾與股的正方形 (3) 將這兩個正方形並排放置好 (4) 將這兩個正方形分為一個邊長為 (股-勾)的正方形與四個直角三角形。 我們不難發現這四個三角形皆與 原三角形全等,如圖一所示。 (5) 將靠外側的兩個直角三角形移至 以弦為邊的正方形內,如圖二所示。 (6) 我們可以得到一個完整的弦-正方形, 而且證明了(勾)^2+(股)^2=(弦)^2。 事實上,以上的兩個圖包含了另一個重要的勾-股-弦關係: (弦)^2=2(勾股乘積)+(勾股之差)^2。

『a2 + b2 = c2』這就是希臘學者畢達哥拉斯(Pythagoras)最著名的發現:『畢氏定理』(Pythagoras' Theorem,即『商高定理』、『勾股定理』)。本定理說明了直角三角形三邊的關係:『斜邊的平方等於另外兩邊的平方之和。』由於證明『畢氏定理』的方法太多,本人祇舉我國在三國時期的兩個例子,以茲參考。

趙爽,三國時期吳國數學家,為《周髀算經》作注。他在《周髀算經注》中,注釋了『勾股定理』。他寫了一篇『勾股圓方圖說』,並附上『弦圖』乙幅〔見圖〕,對『勾股定理』作出了證明:
以弦為邊作一正方形,其面積名為『弦實』。在那正方形內作四個直角三角形,塗以朱紅色,其面積名為『朱實』。中央的小正方形,塗以黃色,其面積稱為『黃實』。而小正方形的邊長等於股、勾之差。但『弦實』等於四個『朱實』及『黃實』之和。於是便得出:
弦2 = 4.[0.5(勾.股)] + (股-勾)2
弦2 = 2(勾.股) + 股2 - 2(勾.股) + 勾2
弦2 = 勾2 + 股2
2006-11-24 10:27 pm
畢氏定理是一個可以用於所有直角三角形的定律,
當左面的邊是A,下面是B,右面是C.
咁就姐係 A二次 + B二次 = C二次
呢條公式係專用黎搵三角形的邊展
如下圖:
|\ A^2 + B^2 = C^2
| \ 由此得知
A | \ C A^2 = C^2 - B^2
| \ B^2 = C^2 - A^2
| \ C^2 = A^2 + B^2
-------
B
2006-11-24 9:08 pm
a^2+b^2=c^2
畢氏是一個人的姓氏
是畢達格拉斯(約公元前560年~公元前480年)發現的
所以用畢氏來命名

商高不是人名啦
中國在商高時代(公元前1100年)就已經知道“勾三股四弦五”的關係,遠早於畢達格拉斯,因此有人主張畢氏定理應該稱呼為商高定理,但普遍性的定理則在陳子時代(公元前6﹑7世紀),而提出定理的證明則首推趙君卿(見周髀的趙君卿注)。趙氏是三世紀的人,現在這個定理普通稱為勾股弦定理或勾股定理




什麼是畢氏定理?我們採用三種說法:


(i)出太陽的日子,在地面上鉛直立一根竹竿,那麼地面上就出現一段竿影(見圖一)。畢氏定理是說:竿端至影端的距離平方等於竿長平方與影長平方之和。


(ii)在直角坐標平面上,如圖二,有 AB 之線段,那麼 AB 的平方就等於 AB 在 x 軸與 y 軸的投影平方之和。


(iii)在直角三角形中,斜邊的平方等於兩股平方之和。如圖三,設 ,則 AB2=BC2+AC2,亦即斜邊上的正方形面積等於兩股上正方形面積之和。



『a2 + b2 = c2』這就是希臘學者畢達哥拉斯(Pythagoras)最著名的發現:『畢氏定理』(Pythagoras' Theorem,即『商高定理』、『勾股定理』)。本定理說明了直角三角形三邊的關係:『斜邊的平方等於另外兩邊的平方之和。』由於證明『畢氏定理』的方法太多,本人祇舉我國在三國時期的兩個例子,以茲參考。

趙爽,三國時期吳國數學家,為《周髀算經》作注。他在《周髀算經注》中,注釋了『勾股定理』。他寫了一篇『勾股圓方圖說』,並附上『弦圖』乙幅〔見圖〕,對『勾股定理』作出了證明:
以弦為邊作一正方形,其面積名為『弦實』。在那正方形內作四個直角三角形,塗以朱紅色,其面積名為『朱實』。中央的小正方形,塗以黃色,其面積稱為『黃實』。而小正方形的邊長等於股、勾之差。但『弦實』等於四個『朱實』及『黃實』之和。於是便得出:
弦2 = 4.[0.5(勾.股)] + (股-勾)2
弦2 = 2(勾.股) + 股2 - 2(勾.股) + 勾2
弦2 = 勾2 + 股2
2006-11-24 7:16 pm
畢氏定理
引言

  世界上唯一一條「不是」定理的定埋是甚麼?那就是著名的畢氏定理。眾所周知,畢氏定理是指直角三角形的斜邊(hypotenuse)的平方 等於另外兩邊的平方之和,這種超過三百多種証明方法的定理,究竟是誰發現的?

最早的發現

  早在公元前五、六世紀,在克羅托那有一個秘密組織「畢達哥拉斯學派」。這個組織相信「萬物皆源於數」,而且它無論在數論、幾何、天文、 音樂等都有很高的造詣。這個教派有個很嚴格的規條,就是內部的發明及創作是不可以對外宣揚。相傳這個學派發現這條定理後,宰了 100 頭牛 來慶祝,所以「畢氏定理」又稱為「百牛定理」。



最早而嚴格的証明

  由於這個學派不得對外宣揚,所以其發現在歷史上並無確實的記載。追溯歷史,最早對畢氏定理作而嚴格的證明要算是希臘的歐幾里得,他在 《幾何原本》編寫的證明是現代數學教科書採用的。



中國及埃及人的貢獻

  公元一世紀,中國最古老的數學及天文著作《周髀》記載了周朝的大夫商高與周公的大段對話,指出夏禹治水時知曉利用 3 : 4 : 5 來 構成三角形,時間上比不晚於埃及的最早記錄 。《周髀》中更明確寫出計算直角三角形弦長的方法:「勾股各自乘,并而開方除之」。由此可知中國人在那時已掌握勾股定理(畢氏定理又名勾股定理)。

 

  另外,數學史家 M. B. 康托爾(Moritz Benedikt Cantor,1829-1920)已推測古埃及人已懂得運用邊長為 3 : 4 : 5 的直角三角形作直角的概念, 以達致測量、建築學上的用途。



「普林頓 322 號之謎」

  一塊編號為「普林頓 322」的巴比倫泥板,它印有一組組完整的三列數字,像 (3, 4, 5) 等。起初學者以為這是古時的賬目表。後來經過伊格鮑爾 (Otto Neugebauer)及薩克斯(A. Sachs)的研究,才在 1945 年解開。原來這一串數字是勾股數(一組能作為直角三角形的邊長的正整數稱為 勾股數)。「普林頓 322」涉及的勾股數十分巨大,若巴比倫人不熟識勾股定及勾股數的參數表,根本無法靠巧合而湊出這些數字來。巴比倫人在 公元前二千年已有這極出色的成就,實在令人驚嘆!


收錄日期: 2021-04-12 22:51:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061124000051KK00957

檢視 Wayback Machine 備份