✔ 最佳答案
1. The person above me is the correct one. It is easy for me. I choose not to answer it.
2. I = sin 12d sin 24d sin 48d sin 84d
= cos 78d cos 66d cos 42d cos 6d
= 1/4 (cos 120d + cos 36d) (cos 72d + cos 60d)
= 1/4 (-cos 60d + cos 36d) (cos 72d + cos 60d)
= 1/16 (-1 + 2 cos 36d) (2 cos 72d + 1)
= 1/16 (4 cos 36d cos 72d + 2 cos 36d - 2 cos 72d - 1)
= 1/16 (4 cos 36d cos 72d + 2 cos 36d + 2 cos 108d - 1)
= 1/16 (4 cos 36d cos 72d + 4 cos 36d cos 72d - 1)
= 1/16 (8 sin 54d sin 18d - 1)
Since sin 5x = 16(sinx)^5 − 20(sinx)^3 + 5sinx (prove it by yourself)
If x = 18d, 5x = 90d
sin 5x = 1
Let y = sin 18d
1 = 16 y^5 − 20 y^3 + 5 y
16 y^5 − 20 y^3 + 5 y - 1 = 0
(y - 1)(16y^4 + 16y^3 - 4y^2 - 4y + 1) = 0
(y - 1)(4y^2 + 2y - 1)^2 = 0
4y^2 + 2y - 1 = 0
I = 1/16 (8 sin 54d sin 18d - 1)
= 1/2 (sin 54d sin 18d) - 1/16
= 1/2 (3 sin 18d - 4 [sin 18d]^3) sin 18d - 1/16
= 1/2 (3y^2 - 4y^4) - 1/16
= 1/2 (3y^2 - 4y^4) - 1/8 + 1/16
= 1/2 (3y^2 - 4y^4 - 1/4) + 1/16
= 1/8 (12y^2 - 16y^4 - 1) + 1/16
= -1/8 (16y^4 - 12y^2 + 1) + 1/16
= -1/8 (4y^2 + 2y - 1)(4y^2 - 2y - 1) + 1/16
= 1/16