Question about skew-Hermitian

2006-11-22 5:17 pm
A matrix H over C is skew-Hermitian if H* = −H.
Prove that every eigenvalue of a skew-Hermitian matrix H has real part zero.

回答 (2)

2006-11-22 6:19 pm
✔ 最佳答案
Definition. A square matrix
圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img1.png
with complex entries is skew-Hermitian, if

圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img7.png
.
Properties.

The trace of a skew-Hermitian matrix is imaginary.
The eigenvalues of a skew-Hermitian matrix are imaginary.
Proof. Property (1) follows directly from property (2) since the trace is the sum of the eigenvalues. But one can also give a simple proof as follows. Let
圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img19.png
, i.e.,






圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img20.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img21.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img22.png

(1)
Here,
圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img27.png
. Thus





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img28.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img29.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img30.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img31.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img32.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img33.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img34.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img35.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img36.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img37.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img38.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img39.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img40.png





圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img41.png


圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img42.png


Hence the eigenvalue
圖片參考:http://images.planetmath.org:8080/cache/objects/4231/l2h/img44.png
is imaginary.
2006-11-22 6:14 pm
If x is an eigenvector of H with eigenvalue L, then
< Hx, x > = L< x,x >
< Hx, x > = < -H*x, x > = - < x, Hx > = - L*< x, x > where L* = conjugate
comparing, we have L = -L*. so L is pure imaginery.


收錄日期: 2021-04-25 16:54:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061122000051KK00633

檢視 Wayback Machine 備份