Form 3 maths pls help

2006-11-21 10:17 pm
a+b=4, ab=3, find the value of (a-b)^2.
the answer should be 4.
thanks.

回答 (2)

2006-11-21 10:26 pm
✔ 最佳答案
a + b = 4 ----- equation 1
ab = 3 ----- equation 2
From equation 2, a = 3 / b ----- equation 3
3 / b + b = 4 ----- substitute equation 3 into equation 1
3 + b^2 = 4b
b^2 - 4b + 3 = 0
(b - 3) (b - 1) = 0
b = 1 or b = 3

From equation 1, when b = 1, a = 4 - 1 = 3,
(a-b)^2= (3-1)^2 = 2^2 = 4

when b = 3, a = 4 - 3 = 1
(a-b)^2= (1-3)^2 = (-2)^2 = 4

2006-11-21 14:29:37 補充:
還有另一個計算方法︰(a-b)^2 = a^2 - 2ab b^2= a^2 2ab b^2 - 4ab= (a b)^2 - 4ab= 4^2 - 4*3= 16 - 12= 4

2006-11-21 14:31:32 補充:
還有另一個計算方法︰(a-b)^2 = a^2 - 2ab + b^2= a^2 + 2ab + b^2 - 4ab= (a+b)^2 - 4ab= 4^2 - 4*3= 16 - 12= 4
2006-11-21 10:28 pm
a+b=4, ab=3

(a-b)^2 = a^2 - 2ab + b^2
= a^2 + 2ab + b^2 - 2ab - 2ab
= (a+b)^2 - 4ab
= 4^2 - 4*3 (because a+b = 4, ab=3)
= 16 - 12
= 4


收錄日期: 2021-04-12 23:31:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061121000051KK01438

檢視 Wayback Machine 備份