數學問題一問

2006-11-21 9:02 pm
點prove
1 ^2+2^2+3^2+..........+n^2=1\\6n(n+1)(2n+1)

回答 (2)

2006-11-22 12:18 am
✔ 最佳答案
Question: Prove that 1²+2²+3²......+n² = 1/6 {n(n+1)(2n+1)}
1. When n=1
 LHS = 1² = 1
 RHS = 1/6 (1)(2)(3) = 1
 So, it is true when n = 1
2. Assume it is true when n = k
  1²+2²+3²......+k² = 1/6 {k(k+1)(2k+1)}

 When n = k+1
 LHS = 1²+2²+3²......+k² +(k+1)²
   = 1/6 {k(k+1)(2k+1)} + (k+1)²
 RHS = 1/6 {(k+1)[(k+1)+1][2(k+1)+1]}
   = 1/6 {(k+1)(k+2)(2k+3)}
   = 1/6 {2k³+9k²+13k+6}
   = 1/6 {(2k³+3k²+k)+(6k²+12k+6)}
   = 1/6 {k(2k²+3k+1)} + 1/6 {6(k²+2k+1)}
   = 1/6 {k(k+1)(2k+1)} + (k+1)²
 LHS = RHS
 It is ture for n = k+1
Therefore, 1²+2²+3²......+n² = 1/6 {n(n+1)(2n+1)} is ture,
for all positive integer.
2006-11-21 9:31 pm
10100^10100


收錄日期: 2021-04-18 20:22:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061121000051KK01183

檢視 Wayback Machine 備份