✔ 最佳答案
14.aBC=DA(given)
CD=AB(giveb)
BD=DB(common side)
∴△BCD is congruent to △DAB
∴angle ADB=angle CBD &angle ABD=angleCDB(corr. angles,congruent△s)
b.BC=DA(given)
angle CBM=angle ADM(proved)
angle CMB=angle AMD(vert. opp. angles)
∴△CBM is congruent to △ADM
∴AM=MD &BM=MD(corr. sides.congruent△s)
2006-11-20 21:51:07 補充:
15a.AX=BX(given)OX=OX(common side)∵OX⊥AB∴angle AXO=angleBXO=90∴△AXO is congruent to △BXOb.AO=OB(corr. sides,congruent△s)by similar method we can proved that △AYO is congruent to △CYO∴AO=OC(corr. sides,congruent△s)∴OB=OC
2006-11-20 22:08:47 補充:
16a.CY=AY-AC=AX-AB=BXBC=CB(common side)∵ AB=AC∴angle ACB=angle ABC(base angles,isos.△)angleYCB+angleACB=180(adj. angles on st. line)Angle YCB=180-angle ABC=angle XBC∴△BCY is congruent to △CBX
2006-11-20 22:09:47 補充:
b.∵angle ZCB=andle ZBC(corr. angles,congruent△s)△CZB is isosceles(sides opp. eq. angles)17RA=PD(given)angle RAC=angle PDB(given)AC=AB+BC=BC+CD=DB∴△RACis congruent to △PDB(SAS)∴angle QCB=angleQBC(corr. angle,congruent △)∴BQ=CQ(sides opp. eq. angles)