✔ 最佳答案
when n=1, =5^0 - 3^0 - 2^0=0
when n=2, =5^3 - 3^3 - 2^3=90,which is divisible by 15
assume n=k
i.e. [5^(2k-1)]-[3^(2k-1)]-[2^(2k-1)]=15M,where M is an integer.
when n=k+1
={5^[2(k+1)-1]} - {3^[2(k+1)-1]} - {2^[2(k+1)-1]}
=5^(2k+2-1) - 3^(2k+2-1) - 2^(2k+2-1)
=[5^(2k-1)][25] - [3^(2k-1)][9] - [2^(2k-1)][4]
=[5^(2k-1)][21+4] - [3^(2k-1)][5+4] - [2^(2k-1)][4]
take out the common factor
= {[5^(2k-1)][21] + [5^(2k-1)][4]} - {[3^(2k-1)][5}+3^(2k-1)][4]} - [2^(2k-1)][4]
= [5^(2k-1)][21] + [5^(2k-1)][4] - [3^(2k-1)][5] - 3^(2k-1)][4] - [2^(2k-1)][4]
= [4][5^(2k-1) - 3^(2k-1) - 2^(2k-1)] + [5^(2k-1)][21] - [3^(2k-1)][5]
=(4)(15M)+ [5^(2k-1)][21] - [3^(2k-1)][5]
=(4)(15M)+ {[(5^(2k-2)](5)(3)(7)} - [3^(2k-2)(3)][5]
=(4)(15M)+ {[(5^(2k-2)](15)(7)} - [3^(2k-2)(15)]
=15{4+[(5^(2k-2)](7) - [3^(2k-2)]}
By the principal of mathematical induction , [5^(2n-1)] -[3^(2n-1)]-[2^(2n-1)]is divisible by 15 for all positive integers n.