✔ 最佳答案
Prove, by mathematical induction, that
1.5 + 2.6 + 3.7 + ... + n(n+4) = (1/6)n(n+1)(2n+13)
for all positive integers n.
當 n = 1 時
LHS = 1‧5 = 5
RHS=(1/6)n(n+1)(2n+1 3)
=(1/6)(1)(1+1)(2(1)+ 13)
= (1/6)(1)(2)(15)
= 5
所以 n = 1 成立
設 n = k 時成立,則
1.5 + 2.6 + 3.7 + ... + k(k+4) = (1/6)k(k+1)(2k+13)
當 n = k+1
LHS =
1.5 + 2.6 + 3.7 + ... + k(k+4) + (k+1)(k+5)
= (1/6)k(k+1)(2k+13) + (k+1)(k+5)
= (k+1)[(1/6)k (2k+13) + (k+5)]
= (k+1)[k (2k+13) + 6(k+5)]/6
= (k+1)[2k2+13k + 6k+30]/6
= (k+1)[2k2+19k+30]/6
= (k+1)(k+2)(2k+15)/6
= (k+1)(k+2)(2(k+1)+13 )/6
= RHS
所以這式成立
(b) It is given that 1 + 2 + 3 + ... + n = (1/2)n(n+1).
Hence, using the result of (a), find the sum of
(i) 1.4 + 2.5 + 3.6 + ... + n(n+3), and
1.5 + 2.6 + 3.7 + ... + n(n+4) = (1/6)n(n+1)(2n+13)
1.(4+1) + 2.(5+1) + 3.(6+1) + ... + n(n+3+1)
= 1.4 + 2.5 + 3.6 + ... + n(n+3) + 1 + 2 + 3 + …. + n
所以
1.4 + 2.5 + 3.6 + ... + n(n+3)
= (1/6)n(n+1)(2n+13) – (1/2)n(n+1)
= n(n+1)[(2n+13)/6 – 1/2]
= n(n+1)(2n+13 –3)/6
= n(n+1)(2n+10)/6
(ii) 1² + 2² + 3² + ... + (2n)²
1.(1+4) + 2.(2+4) + 3.(3+4) + ... + n(n+4)+...+2n(2n+4)
= 1² + 2² + 3² + ... + n² +...+(2n)^2+4(1+2+3+…+n+...+2n)
所以
1² + 2² + 3² + ... + n² +...+(2n)^2
= 1.(1+4) + 2.(2+4) + 3.(3+4) + ... + n(n+4)+...+2n(2n+4)- 4(1+2+3+…+n+...+2n)
=(1/6)(2n)(2n+1)(4n+13) - 4(1/2)(2n)(2n+1)
= (2n)(2n+1)[(1/6)(4n+13) – 2]
= (2n)(2n+1)[4n+13 – 12]/6
= (2n)(2n+1)(4n+1)/6
=1/3[n(2n+1)(4n+1)]
(iii)
2^2+4^2+6^2+...+(2n)^2
=2^2[1^2+2^2+3^2+...+n^2]
=4([1^2+2^2+3^2+...+n^2])
=4n(n+1)(2n+1)/6
=2/3[n(n+1)(2n+1)]
(iv)
1^2+3^2+5^2+...+(2n-1)^2
=[1^2+2^2+3^2+...+(2n)^2]-[2^2+4^2+6^2+...+(2n)^2]
=1/3[n(2n+1)(4n+1)]-2/3[n(n+1)(2n+1)]
=1/3(n)(2n+1)[4n+1-2(n+1)]
=1/3(n)(2n+1)(2n-1)