A. maths(F.4)

2006-11-18 7:09 pm
1, prove that sinx^4 + cosx^4 =1 - 1/2sin2x^2

Hence find the general solution of 4(sinx^4 + cosx^4) - sin2x - 3 = 0

回答 (1)

2006-11-18 8:14 pm
✔ 最佳答案
sin^4x + cos^4x

= sin^4x + cos^4x + 2sin²xcos²x - 2sin²xcos²x

= (sin^4x + 2sin²xcos²x + cos^4x) - 2[sinx cosx]²

= (sin²x + cos²x)² - 2[sinx cosx]²

= 1² - 2[sinx cosx]² ............................ as sin²x + cos²x = 1

= 1 - 2[sin(2x)/2]² .............................. as sin(2x) = 2sinx cosx

= 1 - 2[sin²(2x)/4]

= 1 - (1/2)sin²(2x)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4(sinx^4 + cosx^4) - sin(2x) - 3 = 0

4[1 - (1/2)sin²(2x)] - sin(2x) - 3 = 0 .............. by above part

4 - 2sin²(2x) - sin(2x) - 3 = 0

-2sin²(2x) - sin(2x) + 1 = 0

2sin²(2x) + sin(2x) - 1 = 0

[2sin(2x) - 1][sin(2x) + 1] = 0

2sin(2x) - 1 = 0 or sin(2x) + 1 = 0

sin(2x) = 1/2 or sin(2x) = -1

2x = nπ + (-1)^(n) [π/6] or 2x = nπ + (-1)^(n) [-π/2] for any natural number n

x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 + (-1)^(n) [-π/4]

x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 - (-1)^(n) [π/4]

So the general solution is

x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 - (-1)^(n) [π/4]


收錄日期: 2021-04-13 16:02:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061118000051KK01197

檢視 Wayback Machine 備份