✔ 最佳答案
sin^4x + cos^4x
= sin^4x + cos^4x + 2sin²xcos²x - 2sin²xcos²x
= (sin^4x + 2sin²xcos²x + cos^4x) - 2[sinx cosx]²
= (sin²x + cos²x)² - 2[sinx cosx]²
= 1² - 2[sinx cosx]² ............................ as sin²x + cos²x = 1
= 1 - 2[sin(2x)/2]² .............................. as sin(2x) = 2sinx cosx
= 1 - 2[sin²(2x)/4]
= 1 - (1/2)sin²(2x)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4(sinx^4 + cosx^4) - sin(2x) - 3 = 0
4[1 - (1/2)sin²(2x)] - sin(2x) - 3 = 0 .............. by above part
4 - 2sin²(2x) - sin(2x) - 3 = 0
-2sin²(2x) - sin(2x) + 1 = 0
2sin²(2x) + sin(2x) - 1 = 0
[2sin(2x) - 1][sin(2x) + 1] = 0
2sin(2x) - 1 = 0 or sin(2x) + 1 = 0
sin(2x) = 1/2 or sin(2x) = -1
2x = nπ + (-1)^(n) [π/6] or 2x = nπ + (-1)^(n) [-π/2] for any natural number n
x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 + (-1)^(n) [-π/4]
x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 - (-1)^(n) [π/4]
So the general solution is
x = nπ/2 + (-1)^(n) [π/12] or x = nπ/2 - (-1)^(n) [π/4]