✔ 最佳答案
Let the sequence be A(i).
A(n)= B A(n-1)+C A(n-2), B,C are constants
Let h,k be the roots of equation x^2-Bx-C
Then h+k=B, hk=-C
A(n)= B A(n-1)+C A(n-2)
A(n)- BA(n-1)-C A(n-2)=0
A(n)- (h+k)A(n-1)+hk A(n-2)=0
A(n)- h A(n-1)-kA(n-1)+hk A(n-2)=0
(A(n)- h A(n-1))-k(A(n-1)-h A(n-2))=0
Let H(n)= A(n)- h A(n-1)
H(n)-k H(n-1)=0
H(n)/H(n-1)=k
By telescopic property,
H(n)/H(n-1)=k
H(n-1)/H(n-2)=k
...
...
H(2)/H(1)=k
Multiply the above equation, H(2) to H(n-1) is cancelled.
H(n)/H(1)=k^(n-1)
H(n)= H(1) k^(n-1)
Very similarly, let K(n)= A(n)- k A(n-1)
K(n)= K(1) h^(n-1)
Now we have two formulas
H(n)= H(1) k^(n-1)
K(n)= K(1) h^(n-1)
A(n)-h A(n-1)= H(1) k^(n-1)
A(n)-k A(n-1)= K(1) h^(n-1)
kA(n)-hk A(n-1)= H(1) k^n
hA(n)-hk A(n-1)= K(1) h^n
(k-h)A(n)= H(1) k^n- K(1) h^n
A(n)= D k^n+ E h^n
Where D= H(1)/ (k-h)= (A(1)- h A(0))/(k-h)
E=- K(1)/(k-h)= K(1)/(h-k)= (A(1)- k A(0))/(h-k)