✔ 最佳答案
1.
log 2 + log 5 = log (2*5) = log 10 = 1
2.
3 log 2 + log 125 = log (2³) + log 125 = log (2³*125) = log (1000) = 3
3.
(log 32)/(log 4) = (log 2^5)/(log 2²) = (5 log 2)/(2 log 2) = 5/2
4.
log 1 * log 7 = 0 * log 7 = 0
5.
(log ³√3)/(log 3) = (log 3^(1/3))/(log 3) = 1/3* log 3 / log 3 = 1/3
6.
2 log x + log (1/x²) = log x² + log (1/x²) = log (x² * 1/x²) = log 1 = 0
7.
log √16 + log √325 - log √52
= log (√16 * √325 / √52)
= log √(16*325/52)
= log √100
= log 10
= 1
14a.
log_4 (12) + log_4 (9) - log_4 (108)
= log_4 (12*9/108)
= log_4 (1)
= 0
14b.
log 36 / log 216 = log 6² / log 6³ = (3 log 6)/(2 log 6) = 3/2
14c.
log_a [^5√(a^3)] + log_a [^4√(a^5)]
= log_a [a^(3/5)] + log_a [a^(5/4)]
= 3/5 + 5/4
= 37/20
14d.
[log_2 (6) + log_2 (3)]/[log_2 (36) + log_2 (9)]
= [log_2 (6*3)]/[log_2 (36*9)]
= log_2 (18) / log_2 (324)
= log_2 (18) / log_2 (18²)
= log_2 (18) / [2 log_2 (18)]
= 1/2
其實最重要的就是要知道對數的公式:
1. log a + log b = log (a*b)
2. log a - log b = log (a/b)
3. log m^n = n log m
4. log_a (a^n) = n
記熟了這些後,其他的都不太難了。
希望幫倒你! ^^