概率文字題

2006-11-14 3:01 am
圖)http://img716.photo.163.com/pnum052/17175787/2406668490.jpg
1)圖所示為8地A,B,C,D,E,F,G和H,及這8地之間的公路網。某人從A地駕車出發,到了路口時,選擇行走不同的的公路的概率是均等的,且不能走回頭路,求這人能到達E地的概率。

2)小明每天剩搭電車或巴士上學,而他乘搭電車的概率是2/7。如果乘搭電車上學,則他遲到的概率是2/5。如果乘搭巴士上學,則他遲到的概率是1/5。求他在某天上學沒有遲到的概率。

回答 (3)

2006-11-14 3:24 am
✔ 最佳答案
1.
到E地有兩種方法:
i. A→B→E
ii. A→B→C→E

P(A→B→E) = 1*1/3 = 1/3
P(A→B→C→E) = 1*1/3*1/2 = 1/6

P(到達E) = 1/3 + 1/6 = 1/2


2.
P(乘電車沒有遲到) = 2/7*(1- 2/5) = 2/7 * 3/5 = 6/35
P(乘巴士沒有遲到) = (1- 2/7)*(1- 1/5) = 5/7 * 4/5 = 4/7
P(沒有遲到) = 6/35 + 4/7 = 26/35

希望幫到你!^^
參考: 我自己
2006-11-14 3:34 am
1)A man travel from A to B

Case 1
The man go directly to E
=1/3

Case 2
The man go to C, then E
=1/3×1/2
=1/6

Case 3,4,5
The man go to D, then H
or
The man go to D, then G
or
The man go to C, then F

As the man didn't arrive E
=0

Probability of the man arrive E
=1/3+1/6
=1/2

2)He either travel by tram or bus

Case 1
He travel by tram and didn't late for school
=2/7×(1-2/5)
=6/35

Case 2
He travel by bus and didn't late for school
=(1-2/7)×(1-1/5)
=20/35

Combining two cases:
=6/35+20/35
=26/35
2006-11-14 3:27 am
1)
這人能到達E地的概率
= 到達B概率* 選擇E概率(E,C,D) + 到達B概率* 選擇C概率*選擇E概率
= 1* 1/3 + 1 * 1/3*1/2
= 1/3 + 1/6
=1/2

2)
他在某天上學沒有遲到的概率
= 乘搭電車的概率 * 乘搭電車沒有遲到 + 乘搭巴士的概率 * 乘搭巴士沒有遲到
= 2/7 * (1-2/5) + (1-2/7) * (1 - 1/5)
= 2/7 * 3/5 + 5/7 * 4/5
= 6/35 + 20 / 35
= 26/35



收錄日期: 2021-04-12 22:57:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061113000051KK03206

檢視 Wayback Machine 備份