f.2 factorization (10點)

2006-11-13 4:19 am
Factorize the following expression.
(Express the expression in the form of a perfect square expression.)

 2(a+2b)^2 - 24(a+2b) + 72

 ans = 2(a+2b-6)^2

Thanks!

回答 (3)

2006-11-13 4:30 am
✔ 最佳答案
2(a+2b)^2 - 24(a+2b) + 72
=2[(a+2b)^2 - 12(a+2b) + 36]
=2[(a+2b-6)(a+2b-6)]
=2(a+2b-6)^2
2006-11-13 4:51 am
2(a+2b)^2 - 24(a+2b) + 72
= 2[(a+2b)^2-12(a+2b) +36] -------------------- 抽2(2放在出面不用理會)
= 2[(a+2b)^2- 2(a+2b)(6)+(6)^2] ------------------ a^2 - 2ab + b^2 *a=(a+2b) ; b=(6)*
= 2(a+2b-6)^2 --------------------a^2 - 2ab + b^2 = (a-b)^2 *a=(a+2b) ; b=(6)*
參考: 自己
2006-11-13 4:43 am
2(a+2b)^2 - 24(a+2b) + 72

Let x = (a+2b)

then,
2x^2 - 24x + 72
= 2(x^2 - 12x + 36)
= 2(x - 6)^2
= 2(a+2b-6)^2


收錄日期: 2021-04-23 12:41:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061112000051KK05114

檢視 Wayback Machine 備份