✔ 最佳答案
find the range of real values of k if the quadratic equation x^2+2kx+(6+k)=0 has
Δ=(2k)²-4(1)(6+k)
=4k²-24-4k
=4k²-4k-24
(a) real roots
Δ≧0
4k²-4k-24≧0
k²-k-6≧0
(k-3)(k+2)≧0
k≧3 or k≦ -2
(b) positive roots (unequal)
Δ>0 and -2k>0 and 6+k>0
4k²-4k-24>0 and k<0 and k>-6
k²-k-6>0
(k-3)(k+2)>0
[k>3 or k< -2] and k<0 and k>-6
so no solution
(c) negative roots (unequal)
Δ>0 and -2k<0 and 6+k>0
4k²-4k-24>0 and k>0 and k>-6
k²-k-6>0
(k-3)(k+2)>0
[k>3 or k< -2] and k>0 and k>-6
the solution is k>3
(d) one positive root and negative roots
Δ>0 and 6+k<0
4k²-4k-24>0 and k<-6
k²-k-6>0
(k-3)(k+2)>0
[k>3 or k< -2] and k<-6
the solution is k<-6
(e) equal roots
Δ=0
4k²-4k-24=0
k²-k-6=0
(k-3)(k+2)=0
k=3 or k= -2
(f) equal positive roots
Δ=0 and -2k>0and 6+k>0
4k²-4k-24=0 and k<0and k>-6
k²-k-6=0
(k-3)(k+2)=0
[k=3 or k= -2 ]and k<0and k>-6
the solution is k= -2
(g) equal negative roots
Δ=0 and -2k<0and 6+k>0
4k²-4k-24=0 and k>0and k>-6
k²-k-6=0
(k-3)(k+2)=0
[k=3 or k= -2 ]and k>0and k>-6
the solution is k= 3