✔ 最佳答案
1) Determine
x(y-2)+y(z-x)+z(x-y) =0
xy-2x+yz-xy+zx-zy=0
zx – 2x = 0
x(z – 2) = 0
則 x = 0 或 z = 2,y可以是任何數字。
2) Find the constants A&B
A(x-5)+B(x+3) ≡ 4x-4
Ax – 5A + Bx + 3B ≡ 4x – 4
(A+B)x – 5A + 3B ≡ 4x – 4
A + B = 4
及
-5A + 3B = -4
因 A = 4 - B
-5(4 – B) + 3B = -4
-20 + 5B + 3B = -4
8B = 16
B = 2
A + B = 4
A + 2 = 4
B = 2
3) Prove that the following expressions are indentities
(x2+1)(x2-x+1) ≡ x4+x2+1
LHS = (x2+1)(x2-x+1)
= x2(x2-x+1) + (x2-x+1)
= x4 – x3 + x2 + x2 – x + 1
= x4 – x3 + 2x2 – x + 1
不等於 RHS
所以這式是非全等的。
4) Prove that the following expressions are indentities
x(x2+9)(x+3)(x-3) ≡x5-81x
RHS = x5-81x
= x(x4 – 34)
= x(x2 + 32)(x2 – 32)
= x(x2 + 9)(x – 3)(x + 3)
= LHS
所以這式是全等的
5) Expand
1
-- (5b-2a)(5b+2a)
5
= (5b-2a)(5b+2a)/5
= (25b2-4a2) /5
= 5b2 – 4a2/5
(( 3/4) a3 – (2/3) b3)2
= ( 3/4)2 a6 – 2(3/4)(2/3)a3b3 + (2/3) 2 b6
= 9a6/16 - a3b3 + 4b6/9