找一些有關納米的資料....以及圖片....希望有三張以上~~

2006-11-03 1:05 am
找一些有關納米的資料....要附上三張以上的圖片~~
有15分的~~

回答 (2)

2006-11-03 1:10 am
✔ 最佳答案
納米科技是一門應用科學,其目的在於研究於納米尺寸時,物質和設備的設計方法、組成、特性以及應用。納米科技是許多如生物、物理、化學…等科學領域在技術上的次級分類,美國的國家納米科技啟動計劃(National Nanotechnology Initiative)將其定義為「1至100納米尺寸間的物體,其中能有重大應用的獨特現象的了解與操縱。」
納米科技是學習納米尺度下的現象以及物質的掌控,尤其是現存科技在納米時的延伸。納米科技的世界為原子、分子、高分子、量子點和高分子集合,並且被表面效應所掌控,如凡得瓦耳力、氫鍵、電荷、離子鍵、共價鍵、疏水性、親水性和量子隧穿等,而慣性和湍流等巨觀效應則小得可以被忽略掉。舉個例子,當表面積對體積的比例劇烈地增大時,開起瞭如催化學等以表面為主的科學新的可能性。
微小性的持續探究以使得新的工具誕生,如原子力顯微鏡和掃描隧道顯微鏡等。結合如電子束微影之類的精確程序,這些設備將使我們可以精密地運作並生成納米結構。納米材質,不論是由上至下製成(將塊材縮至納米尺度,主要方法是從塊材開始通過切割、蝕刻、研磨等辦法得到儘可能小的形狀(比如超精度加工,難度在於得到的微小結構必須精確)。),或由下至上製成(由一顆顆原子或分子來組成較大的結構,主要辦法有化學合成,自組裝(self assembly)和定點組裝positional assembly。難度在於宏觀上要達到高效穩定的質量),都不只是進一步的微小化而已。物體內電子的能量量子化也開始對材質的性質有影響,稱為量子尺度效應,描述物質內電子在尺度劇減後的物理性質。這一效應不是因為尺度由巨觀變成微觀而產生的,但它確實在納米尺度時佔了很重要的地位。物質在納米尺度時,會和它們在巨觀時有很大的不同,例如:不透明的物質會變成透明的(銅)、惰性的物質變成可以當催化劑(白金)、穩定的物質變得易燃(鋁)、固體在室溫下變成了液體(金)、絕緣體變成了導體(矽)。
納米科技的神奇來自於其在納米尺度下所擁有的量子和表面現象,並因此可能可以有許多重要的應用和製造許多有趣的材質。

圖片參考:http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Molecular_gears.jpg/180px-Molecular_gears.jpg



圖片參考:http://zh.wikipedia.org/skins-1.5/common/images/magnify-clip.png
由NASA電腦摸擬的分子齒輪
歷史
物理學家理察·費曼在1959年12月29日的美國物理學會年會,作出著名的演講《在底部還有很大空間》,提出一些納米技術的概念。他以「由下而上的方法」(bottom up) 出發,提出從單個分子甚至原子開始進行組裝,以達到設計要求。他說道,「至少依我看來,物理學的規律不排除一個原子一個原子地製造物品的可能性。」並預言,「當我們對細微尺寸的物體加以控制的話,將極大得擴充我們獲得物性的範圍。」這被視為是納米技術概念的靈感來源。
納米科技一辭的定義是東京理科大學教授Norio Taniguchi在1974年提出[1]。1981年掃描隧道顯微鏡(STM)的發明被廣泛視為納米元年。

[編輯] 關於「納米科技」一詞運用的爭議
廣義上,納米技術包括多用來製造遲存在100納米以下的結構的技術。包括那些用來製作納米線的;包括那些用在半導體製造工業上的技術,如深紫外線光刻、電子束光刻、聚焦粒子束光刻、納米印刷光刻、原子層沉積和化學氣相法;更進一步還包括分子自組裝技術。但是這些技術在就出現在納米時代之前,而不是專為了納米技術而設計,也不是納米技術研究的結果。
現在以「納米」冠名的那些技術,對最有野心的和革命性的分子製造卻毫無關係,或者說是遠遠不能達到要求。這樣,「納米」可能被科學家們和企業家們濫用而形成「納米泡沫」,而對那些更有野心和遠見的工作毫無益處。
美國國家科學基金資助了研究者David Berube對納米領域進行整體上的研究,後者的研究成果出版成為了專著《納米騙局:納米技術喧囂背後的真相》[2]。這個由NNI主席Mihail Roco攝寫序言的著作得出的結論是:許多被當作「納米技術」出售的產品,其實只是就材料科學的新瓶裝舊酒,直接導致一個僅僅是售賣的納米管,納米線或類似產品的納米技術工業,最後的結果是少數售賣大量低端產品的供應商。

[編輯] 特性描述
隨着尺寸的減小,一系列的物理現象顯現出來。這其中包括統計力學效應和量子力學效應。並且,同宏觀系統相比,許多物理性質會改變。一個典型的例子是材料的表面體積比。納米技術可以視作在傳統學科上對這些性質詳盡描述的發展。進一步講,傳統的學科可以被從新理解為納米技術的具體應用。這種想法和概念上的互動對這個領域的發展起到了推動作用。廣義上講,納米技術是科學和技術在理解和製造新材料新器械方向上的推演和應用。這些新材料和技術大體上就是物理性質在微尺度上的應用。
和這些系統的定性研究相關的領域是物理、化學和生物,以及機械工程和電子工程。但是,由於納米科技的多學科和學科交叉的特性,物理化學、材料科學和生物醫學工程的學科也被視作納米技術重要和不可缺少的組成部分。納米工程師們住眼觀新材料的設計,合成,定性描述和應用。例如在分子結構上的聚合物製造,在表面科學基礎上的電腦晶片分佈設計,都是納米科技在當代的應用例子。在納米科技中,膠狀懸浮也有很重要的地位。
材料在納米尺度下會突然顯現出與它們在宏觀情況下很不相同的特性,這樣可以使一些獨特的應用成為可能。例如,不透明的物質變為透明(銅);惰性材料變成催化劑(鉑);穩定的材料變得易燃(鋁);在室溫下的固體變成液體(金);絕緣體變成導體(矽)。物質在納米尺度的獨特量子和表面現象造就了納米科技的許多分支。

[編輯] 工具與技術
當代電子和中子的發現讓人類知道還有比我們能想象到的最小的東西還要小的物質時,對納米世界的好奇心已經萌發。當然,十九世紀10年代,可以研究納米結構的早期工具的發展才真的使納米科學和納米技術成為可能。
原子力顯微鏡(AFM)和掃描隧道顯微鏡(STM)的這兩種早期的掃描探針促成了納米時代的到來。同時,基於STM的許多其它類型的掃描探針顯微鏡,使得觀測納米結構成為可能。
探針的探頭可以用來操縱納米結構(這種工藝叫做位置組裝)。但是這種過程太慢了,從而到導致了各種納米光刻技術的發展,例如蘸筆納米光刻術,電子束曝光和納米壓印術。
光刻是自上的下的製作技術,用來把大塊物體縮小到納米尺寸。相對的,自下而上的技術直接用原子或分子搭建更大的結構。這些技術包括化學合成,自組裝和位置組裝。
2006-11-03 1:12 am
奈米(英文:nanometer),又稱纳米,符號nm,是一種長度單位,1奈米等於1米的十億分之一,約為分子或DNA的大小,或是人類頭髮絲直徑的十萬分之一。
1 000 000 000 奈米 = 1 米(m)
1 000 000 奈米 = 1 毫米(mm)
1 000 奈米 = 1 微米(μm)
0.00 1 奈米 = 1 皮米(pm)

奈米科技是一門應用科學,其目的在於研究於奈米尺寸時,物質和設備的設計方法、組成、特性以及應用。奈米科技是許多如生物、物理、化學…等科學領域在技術上的次級分類,美國的國家奈米科技啟動計劃(National Nanotechnology Initiative)將其定義為「1至100奈米尺寸間的物體,其中能有重大應用的獨特現象的了解與操縱。」

奈米科技是學習奈米尺度下的現象以及物質的掌控,尤其是現存科技在奈米時的延伸。奈米科技的世界為原子、分子、高分子、量子點和高分子集合,並且被表面效應所掌控,如凡得瓦耳力、氫鍵、電荷、離子鍵、共價鍵、疏水性、親水性和量子隧穿等,而慣性和湍流等巨觀效應則小得可以被忽略掉。舉個例子,當表面積對體積的比例劇烈地增大時,開起瞭如催化學等以表面為主的科學新的可能性。

微小性的持續探究以使得新的工具誕生,如原子力顯微鏡和掃描隧道顯微鏡等。結合如電子束微影之類的精確程序,這些設備將使我們可以精密地運作並生成奈米結構。奈米材質,不論是由上至下製成(將塊材縮至奈米尺度,主要方法是從塊材開始通過切割、蝕刻、研磨等辦法得到儘可能小的形狀(比如超精度加工,難度在於得到的微小結構必須精確)。),或由下至上製成(由一顆顆原子或分子來組成較大的結構,主要辦法有化學合成,自組裝(self assembly)和定點組裝positional assembly。難度在於宏觀上要達到高效穩定的質量),都不只是進一步的微小化而已。物體內電子的能量量子化也開始對材質的性質有影響,稱為量子尺度效應,描述物質內電子在尺度劇減後的物理性質。這一效應不是因為尺度由巨觀變成微觀而產生的,但它確實在奈米尺度時佔了很重要的地位。物質在奈米尺度時,會和它們在巨觀時有很大的不同,例如:不透明的物質會變成透明的(銅)、惰性的物質變成可以當催化劑(白金)、穩定的物質變得易燃(鋁)、固體在室溫下變成了液體(金)、絕緣體變成了導體(矽)。

奈米科技的神奇來自於其在奈米尺度下所擁有的量子和表面現象,並因此可能可以有許多重要的應用和製造許多有趣的材質。

see detail

http://zh.wikipedia.org/w/index.php?title=%E7%BA%B3%E7%B1%B3%E7%A7%91%E6%8A%80&variant=zh-tw


收錄日期: 2021-04-21 12:07:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061102000051KK02344

檢視 Wayback Machine 備份