Integration

2006-11-02 7:52 pm
Please integrate the following equation:
Int {1/[(x^2)+4]}
Thanks.

回答 (3)

2006-11-02 8:08 pm
✔ 最佳答案
Solution

For this question, we need to use substitution to integrate this question,

∫[1/(x^2 + 4)] dx
Put x = 2tanθ,
Then dx = 2(secθ)^2 dθ
Also, θ = tan-¹(x/2)

The given integral becomes
= ∫ 2(secθ)^2/ [(2tanθ)^2 + 4] dθ
= ∫ 2(secθ)^2/ [4(tanθ)^2 + 4] dθ
= ∫ 2(secθ)^2/ [4(secθ)^2] dθ
= ∫½ dθ
= ½∫dθ
= ½ (θ) + C
= tan-¹(x/2) + C, C is a constant
參考: myself
2006-11-02 8:03 pm
∫ {1/[(x^2)+a^2]}=ln|x+√(x^2+a^2)|+C

∫ {1/[(x^2)+4]}
=ln|x+√(x^2+4)|+C
2006-11-02 7:58 pm
係咪1呀?

2006-11-02 11:59:27 補充:
你in一個-1次方ge野,in 完咪0次方囉!


收錄日期: 2021-04-12 22:50:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061102000051KK01058

檢視 Wayback Machine 備份