Maths Problems急!!!!!!!

2006-11-01 7:17 am
1.it is given that f(x)=3x-2
(a)Find the vales of f(2) and f(4).

(b)Verify that [f(2)]^2不等於 f(2^2)

2.If f(x)=3(2^3x),find the values of f(-2/3)

回答 (5)

2006-11-01 9:32 pm
✔ 最佳答案
a) f(2)=3(2)-2
f(2)=6-2=4

f(4)=3(4)-2
f(4)=12-2=10

b) [f(2)]^2
=[4]^2  
=4 * 4 =16
不等於
f(2^2)
=f(2 * 2)
=f(4) 
=10

2. f(x)=3(2^3x)
f(-2/3)=3[2^3(-2/3)]
=3[2^(-6/3)
=3[2^(-2)]
=3[1/2^2]
=3[1/4]
=3/4

do u understand now if u don't send a mail to me
參考: me
2006-11-01 3:27 pm
a) f(2)=3(2)-2
f(2)=6-2=4

f(4)=3(4)-2
f(4)=12-2=10

b) [f(2)]^2
=[4]^2 (上面prove咗) 
=4 * 4 =16
不等於
f(2^2)
=f(2 * 2)
=f(4) (上面prove咗)
=10

2. f(x)=3(2^3x)
f(-2/3)=3[2^3(-2/3)]
=3[2^(-6/3)
=3[2^(-2)]
=3[1/2^2]
=3[1/4]
=3/4
2006-11-01 8:07 am
1.it is given that f(x) = 3x - 2
(a)Find the vales of f(2) and f(4).
f(2) = 3*2 - 2 = 6 - 2 = 4
f(4) = 3*4 - 2 = 12 - 2 = 10

(b)Verify that [f(2)]^2不等於 f(2^2)
[f(2)]^2 = (4)^2 = 16
f(2^2) = f(4) = 10
so that [f(2)]^2不等於 f(2^2)

2.If f(x) = 3 (2^3x),find the values of f(-2/3)
f(-2/3) = 3 [2^3*(-2/3)] = 3[2^(-2)] = 3*(1/4) = 3/4
2006-11-01 7:39 am
1.
(a)
f(2) = 3(2) - 2 = 4
f(4) = 3(4) - 2 = 10

(b)
[f(2)]^2 = 4^2 = 16
f(2^2) = f(4) =10

Therefore, [f(2)]^2不等於 f(2^2)

2.
f(-2/3) = 3[2^3(-2/3)] = 3(2^ -2) = 3/4
2006-11-01 7:26 am
1a f(2)=3(2)-2=4 f(4)=3(4)-2=10

b [f(2)]^2=4^2=16 f(2^2)=f(4)=10

so they are not equal

2.f(-2/3)=3(2^3(-2/3))=3(2^(-2))=3/4
參考: me


收錄日期: 2021-04-12 19:04:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061031000051KK05253

檢視 Wayback Machine 備份