A. maths(F.4)

2006-11-01 5:41 am
Let r = (x+1)/(x^2+x+1). Find the range of values of r for all real values of x.

Why the answer is -1/3 smaller or equal than r greater than or equal 1

回答 (2)

2006-11-01 5:56 am
✔ 最佳答案
r = (x + 1) / (x^2 + x + 1)
r(x^2 + x + 1) = x + 1
rx^2 + rx + r - x - 1 = 0
rx^2 + (r - 1)x + (r - 1) = 0.................(*)
As x is a real number, for suitable values of r, (*) must have real roots.
Thus discriminant ≥ 0
(r - 1)^2 - 4r(r - 1) ≥0
(r - 1)[(r - 1 - 4r)] ≥ 0
(r - 1)(-3r - 1) ≥ 0
(r - 1)(3r + 1) ≤ 0
-1 / 3 ≤ r ≤ 1
2006-11-02 2:58 am
r = (x + 1) / (x^2 + x + 1)

r(x^2 + x + 1) = x + 1

rx^2 + rx + r - x - 1 = 0

rx^2 + (r - 1)x + (r - 1) = 0.................(*)

As x is a real number, for suitable values of r, (*) must have real roots.

Thus discriminant ≥ 0

(r - 1)^2 - 4r(r - 1) ≥0

(r - 1)[(r - 1 - 4r)] ≥ 0

(r - 1)(-3r - 1) ≥ 0

(r - 1)(3r + 1) ≤ 0

-1 / 3 ≤ r ≤ 1
希望幫到你 求你選我最佳答案

求下你

唔該!!!!!!


唔該!!!!!!
參考: me


收錄日期: 2021-04-23 16:24:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061031000051KK04574

檢視 Wayback Machine 備份