✔ 最佳答案
1.傳統的數獨有九格,係日本譯音譯返黎,數獨是一種源自18世紀末的瑞士,後在美國發展、並在日本得以發揚光大的數學智力拼圖遊戲。拼圖是九宮格(即 3格寬×3格高)的正方形狀,每一格又細分為一個九宮格。在每一個小九宮格中,分別填上1至9的數字,讓整個大九宮格每一列、每一行的數字都不重複。
2研究圓周率 p 歷史的四個階段
「起」
「起」是圓周率的起源,究竟誰先發現它?
何時、何人、何地?
早在公元前二千多年,古代的巴比倫、埃及、中國和以色列人已先後發現了一個事實:不管圓的大小為何,它的圓周長除以它的直徑長會是一個不變的數值 (常數) 。讓我們看看古巴比倫人和埃及人的發現:
古巴比倫
巴比倫人從計算周界發現 :一塊出土於 1936 年的黏土塊上記載,在古巴比倫時期 (約公元前 1900-1600 年) ,巴比倫人相信六邊形的周界為0;57,36 (以底數 60 計,亦即 = 96/100 = 24/25) 乘以它的外接圓的周界:
六邊形周界 = 24/25 ´ 其外接圓周界 = 24/25 ´ p ´ 直徑
由此,得出相信是最古老的圓周率的近似值:
p 〔巴比倫〕= 25/8 = 3.125
埃及
埃及人則從面積計算得 (約公元前 2000 年) :在賴因德古本 (Rhind Papyrus),記載了一條有關圓周率的問題:「一塊圓形土地的的直徑長 9,它的面積為何……取圓直徑的九分八,做為正方形的邊形,就可得到和圓等面積的正方形」。亦即:
A = (8d/9)2
由此,得出圓周率的近似值:
p 〔埃及〕 = (16/9)2 = 3.16049...
早在公元前二千多年,古代的巴比倫、埃及、中國和以色列人已先後發現了一個事實:不管圓的大小為何,它的圓周長除以它的直徑長會是一個不變的數值 (常數) 。讓我們看看古巴比倫人和埃及人的發現:
中國 (約公元前十二世紀):中國最古老的數學書《周髀算經》記載了「周三徑一」。這顯示中國人認為 p = 3。
聖經 (約公元前 500 年):在《列王紀上篇》第七章二十三節,也記載了有關圓周率的數值:「他又鑄一個銅海、樣式是圓的、高五肘、徑十肘、圍三十肘」 (這是描述所羅門王神殿內祭壇的規格),亦即當時的人也認為 p = 3。
在這段期間,人們都是為生活而作計算,鮮有為圓周率而找圓周率。他們的發現多源自經驗 (實際量度) 所得,對圓周率的興趣只在於它在建築及工程上的應用,最多也只是想找出圓周率的值是多少。
直至公元前約四世紀,人類才轉往追問如何找出圓周率的值,開始為圓周率而找圓周率:
古希臘西那庫斯的阿基米德(Archimedes of Syracuse,公元前 287 - 212 年),是第一個有系統地找出圓周率的近似值和圓周率的上下限的數學家。
古代中國也有出色的數學研究。在西漢,天文學和曆法專家劉歆(公元前 50 - 公元 20 年) 因被差使去為國家發展一套標準的量度體系,他從製造一個青銅的圓柱器皿,算得 p = 3.15;而另一位天文學家東漢的張衡(78 - 139 年),《後書》記載了他從觀看天星球體而得出圓周率的值約為(= 3.1622...)(以單位圓及其外切正方形的面積比為 5 : 8 來計算)。後來王蕃(217 - 257 年)發現更準確的圓周率數值: p = 3.155...。
繼劉徽後約二百年,南北朝的祖沖之(429 - 500 年)在數學上也有傑出的成就。在《隋書.律曆志》中記載:
「宋末,南徐從事史祖沖之更開密法,以圓徑一丈,圓周盈數三丈一尺四寸一分五厘九毫二秒七忽,朒數三丈一尺四寸一分五厘九毫二秒六忽,正數在盈朒二限之間」
在 1621 年,荷蘭數學家的斯涅爾(Wildebrod Snell, 1580? - 1626 年)發現了一套更有效的方法,他不須倍增多邊形的邊數,就可求出更準確的數值:他將多邊形的每一份分成三份,及將其每一條邊再作兩條邊,使之能更準確地包含圓的弧;再根據不等式,得出:
3.14022 - 3.14160
3.西方國家普遍相信「畢氏定理」是由古希臘數學家畢達哥拉斯 (Pythagoras, 公元前 572 至公元前 492 年)發現的,或者是至少是由他證明的。
4.應該係+同-,之前係冇數學算式,有左+同-先有數學算式
2006-11-01 15:07:59 補充:
4.係有+同-先~之前d人把圖案畫在牆上!多一隻就畫一隻!小一隻就抹一隻!
2006-11-03 15:22:51 補充:
下面個位咪都係抄人吔!