Let f(x) = sqrt(-1)
If you define the above function is real number to real number, then sqrt(-1) is no such real number.
But if you define the above function is complex number to complex number, then sqrt(-1) is i (which is a definition, where i^2 = -1)
參考: myself, A Maths textbook (I am in the old syllabus)
|-1| or |1| = 1
(-1)^2 = 1
|-1|^2 = 1
So, |-1| = 1 的開方
Because |某一個數|=正數
Then, |-1|=|1|
|-1|的開方=|1|的開方=1
But, 負數的開方是冇可能等於任何數值...
So, we can prove that -1的開方=unknown
|-1|的開方才可計出 答案=1