數學唔識,快!

2006-10-26 5:42 am
the sum to infinity of a geometric sequence is 81 and the sum of all its odd terms (ie,T(1)+T(3)+T(5).......)is 121.5



find the common ratio
find T(1)

回答 (2)

2006-10-26 5:51 am
✔ 最佳答案
let first term is a, common ratio is r
then
first term a
second term ar
third term ar^2
T(1)+T(2)+T(3)+T(4)+T(5)+...=81
a/(1-r)=81
T(1)+T(3)+T(5).. .....=121.5
a/(1-r^2)=121.5
a/[(1-r)(1+r)]=121.5
81/(1+r)=121.5
1+r=81/121.5
1+r=2/3
r=-1/3
a/(1-r)=81
a/(1+1/3)=81
3a/4=81
a=108
common ratio =-1/3
T(1) =108
2006-10-26 6:16 am
sum to infinity, T(1) + T(2) + T(3) ... :
 a
------- = 81
1 - r

As the common ratio of T(1), T(3), T(5), ... is r ^ 2
           a
T(1) + T(3) + T(5) ... = ----------- = 121.5
          1 - r ^ 2

So
   a
---------------------- = 121.5
( 1 - r ) ( 1 + r )
 a    1
---------- * ----------- = 121.5
( 1 - r ) ( 1 + r )
   1
81 * ----------- = 121.5
  ( 1 + r )
    81
1 + r = -------
   121.5
  81
r = ------ - 1
 121.5
   40.5
r = - ----------
   121.5
   1
r = - ---
   3

Then, a = 81 ( 1 - r )
        1
a = 81 * [ 1 - ( - ---- ) ]
        3
     4
a = 81 * ( ---- )
     3
a = 108


收錄日期: 2021-04-25 16:50:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061025000051KK04433

檢視 Wayback Machine 備份