f.4 a~~math

2006-10-19 5:29 am
1/2 + 2/2^2 + 3/2^3 +...+n/2^n=2 - (n+2)/2^n

help me thanks~~

回答 (1)

2006-10-19 5:42 am
✔ 最佳答案
n=1,
LHS = 1/2
RHS = 2 - (1 + 2)/2 = 1/2

Assume n=k is true, ie 1/2 + 2/2^2 + 3/2^3 +...+k/2^k=2 - (k+2)/2^k

when n=k+1
LHS
= 1/2 + 2/2^2 + 3/2^3 +...+(k+1)/2^(k+1)
= 1/2 + 2/2^2 + 3/2^3 +...+k/2^k+(k+1)/2^(k+1)
= 2 - (k+2)/2^k+(k+1)/2^(k+1)
= 2 - [ 2(k+2) - (k+1) ] / 2^(k+1)
= 2 - (k+3) / 2^(k+1)
= 2 - [(k+1)+2] / 2^(k+1)


收錄日期: 2021-04-23 12:35:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061018000051KK04482

檢視 Wayback Machine 備份