f4 maths (Trigonometric Formulas)

2006-10-17 1:33 am
It is given that in △ABC,a:b = 4:5. Based on this,Sam made the deductions below:

From the sine formula,we have
sinA:sinB = 4:5
Hence,sin²A:sin²B = 16:25
(1-sin²A):(1-sin²B) = (1-16):(1-25)
cos²A:cos²B = -15:-24 = 5:8
Therefore,cosA:cosB = √5:√8

(a) His final conclusion that‘cosA:cosB = √5:√8’is wrong. Explain.

(b) If it is known in addition that a:b:c = 4:5:6,can you find the ratio
cosA:cosB:cosC?

回答 (2)

2006-10-17 1:47 am
✔ 最佳答案
(a)
sin²A:sin²B = 16:25
(1-sin²A):(1-sin²B) = (1-16):(1-25)

this step is wrong, so his final conclusion that‘cosA:cosB = √5:√8’is wrong
(b)
a:b:c = 4:5:6
set a=4k, b=5k, c=6k
cosA
=(b^2+c^2-a^2)/2bc
=(25+36-16)/60
=3/4
cosB
=(a^2+c^2-b^2)/2ac
=(16+36-25)/48
=27/48
=9/16
cosC
=(a^2+b^2-c^2)/2ab
=(16+25-36)/40
=5/40
=1/8
cosA:cosB:cosC
=3/4: 9/16: 1/8
=12:9:2
2006-10-17 1:45 am
(a)sin²A:sin²B = 16:25 doesn't means (1-sin²A):(1-sin²B) = (1-16):(1-25)
it means (1-sin²A):(1-sin²B) = (1-16x):(1-25x) where 16x=sin²A
(b) a:b:c = 4:5:6 therefore a=4x, b=5x,c=6x
cosA=(b^2+c^2-a^2)/2bc=((5x)^2+(6x)^2-(4x)^2)/2(5x)(6x)=3/4
cosB=(a^2+c^2-b^2)/2ac=9/16
cosC=(a^2+b^2-c^2)/2ab=1/8
cosA:cosB:cosC=(3/4) : (9/16): (1/8)
=((3/4)*16) :((9/16)*16) : ((1/8)*16)
=12:9:2


收錄日期: 2021-04-12 22:51:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061016000051KK02108

檢視 Wayback Machine 備份