Maths question??
3+6+9+...+300
Can you find the formula????
回答 (12)
✔ 最佳答案
首項加未項,再乘項數,最後除2
3+6+9+...+300
=(3+300)(100)/2
=303(100)/2
=303(50)
=15150
3+6+9+.....+300
=[(首項+尾項)項數]/2
=(3+300)(100)/2
=15150
你呢題係奧林匹克數...
佢有一條公式係[(首項+未項)*項數/2],
如果你想搵項數,
條公式就係[(未項-首項)/公差+1]
公差即係數列內數同數之間o既差...
首項即係數列中o第一個數...
未項即係數列中o既最尾個個數...
項數即係整個數列有幾多個數...
根據公式,
呢個數列o既項數係(300-3)/3+1=100,
所以式就係(3+300)*100/2=15150
答案係 15150
2006-10-22 13:36:17 補充:
*係乖,/係除,
used formula:S(n)=n[2a+(n-1)d]/2
*a=3
*d=6-3
=3
*S(n)=a+(n-1)d
=3+(100-1)3
=300
*S(100)=300
*n=100
*Solution:
S(100)=100[2(3)+(100-1)3]/2
=100[6+297]/2
=15150
首項加未項,再乘項數,最後除2
3+6+9+...+300
=(3+300)(100)/2
=303(100)/2
=303(50)
=15150
參考: me
(頭+尾)項數/2=總和。 項數=(尾-首)/公差+1
3+6+9+...+300
=(3+300)(100)/2
=303(100)/2
=303(50)
=15150
3+6+9+.....+300
=[(首項+尾項)項數]/2
=(3+300)100/2
(300+3)*(300/2)+(300/2)
=303*150+150
=45600
a=3
d=3
n=100
s=n/2[2a+(n-1)d]
s=50[6+99*3]
s=15150
2006-10-16 17:15:58 補充:
TOTAL SUM = 15150
收錄日期: 2021-04-12 22:56:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061016000051KK01959
檢視 Wayback Machine 備份