binomial theorem SHORT QUESTION @ 2006 A.Maths CE

2006-10-16 3:38 am
It is given that

(1-2x+3x^2)^n=1-10x+kx^2 + terms involving higher powers of x,

where n is a positive integer and k is a constant. Find the values of n and k. (5 marks)

回答 (1)

2006-10-16 3:44 am
✔ 最佳答案
(1-2x+3x^2)^n=1-10x+kx^2 + terms involving higher powers of x,

(1+x(3x-2))^n=1-10x+kx^2 + terms involving higher powers of x
1+nx(3x-2)+[(n(n-1)/2][x(3x-2)]^2+...=1-10x+kx^2 + terms involving higher powers of x
1+nx(3x-2)+[(n(n-1)/2][x(3x-2)]^2=1-10x+kx^2+...
1+3nx^2-2nx+[(n(n-1)/2][4x^2]=1-10x+kx^2
1+3nx^2-2nx+[(n(n-1)][2x^2]=1-10x+kx^2
-2n=-10
3n+2(n)(n-1)=k

n=5
k=15+2*5*4
k=55


收錄日期: 2021-04-25 16:51:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061015000051KK05305

檢視 Wayback Machine 備份