已知一等差數列2,10,18,.......的第n項是130。求..

2006-10-15 7:18 pm
已知一等差數列2,10,18,.......的第n項是130。求
a) n的值
b) 該數列首2n項之和

回答 (4)

2006-10-15 7:40 pm
✔ 最佳答案
T(1) = a = 2, d = 18 -10 = 10 -2 = 8

(a) T(n) = a + (n - 1)d
2 + 8(n - 1) = 130
8(n - 1) = 128
8n - 8 = 128
8n = 136
n = 17

(b) 2n = 17 * 2 = 34
S (n) = n / 2 [ 2a + (n - 1)d ]
S (34) = 34 / 2 [ 2 ( 2 ) + 8 ( 34 -1 )]
= 17 [ 4 + 264]
= 4556
2006-10-15 7:35 pm
n=17
b)4556
參考: myself
2006-10-15 7:30 pm
a) f(n) = 8n-6 = 130
8n = 136
n = 17

b) f(34) = 8(34)-6 = 266
首2n項之和 = 2+10+18+......+266 = 2x34 + 8x561 = 4556

2006-10-15 11:32:51 補充:
唔記得項數之和的公式, 現在以心算代替, 你自己查番條式喇

2006-10-15 11:35:13 補充:
樓上應為 T(n)=a (n-1)d
2006-10-15 7:29 pm
設a為首項,d為兩數的差
a.
等差數列式:T(n)=a+(n+1)d
即:130=2+(n+1)8
130=2+8n+8
120=8n
n=15

b. 2n=30
T(2n)=2+(30+1)8
T(2n)=250
參考: 自己


收錄日期: 2021-04-13 15:20:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061015000051KK01482

檢視 Wayback Machine 備份