locus

2006-10-15 10:33 am
8. OD is the diameter of the circle centred at C. AC perpendicular to )D and AO cut the circle at B where AB=BO, D is (p,0)
a. Find the coordinates of B in terms of p
b. find ㄥAOC
c. find the coordinate of A in terms of p

http://homelf.kimo.com.tw/keraope/new_yy.JPG

回答 (1)

2006-10-15 12:53 pm
✔ 最佳答案
8
(a)
the equation of the circle
(x-p/2)^2+y^2=p^2/4
AB=BO
B is the mid-point of AO
so the x-coordinate of B is p/4
sub into the equation of the circle
(p/4-p/2)^2+y^2=p^2/4
p^2/16+y^2=p^2/4
y^2=(3/16)p^2
y=(√3/4)p
the coordinates of B in terms of p
=(p/4, (√3/4)p)
(b)
the coordinate of A in terms of p
=(p/2, (√3/2)p)
tan ㄥAOC=AC/OC

tan ㄥAOC=[(√3/2)p]/(p/2)
tan ㄥAOC=√3
ㄥAOC=60
(c)
the coordinate of A in terms of p

=(p/2, (√3/2)p)


收錄日期: 2021-04-25 16:49:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061015000051KK00641

檢視 Wayback Machine 備份