(a+b)^5-(a-b)^5=?

2006-10-14 5:41 pm
(a+b)^5-(a-b)^5=?

回答 (4)

2006-10-14 5:53 pm
✔ 最佳答案
(a+b)5-(a-b)5=?
=a5+5a4b+10a3b2+10a2b3+5ab4+b5 – (a5-5a4b+10a3b2-10a2b3+5ab4-b5)
=a5+5a4b+10a3b2+10a2b3+5ab4+b5 – a5+5a4b-10a3b2+10a2b3-5ab4+b5
=10a4b+20a2b3+2b5
= 2b(5a4 + 10a2b2 + b4)

2006-10-14 6:44 pm
其實有個方法係快D可以計到的..................

(a+b)^5-(a-b)^5

= [ (a)^5+2(a)(b)+(b)^5 ] - [ (a)^5-2(a)(b)+(b)^5 ]

= a^5+2ab+b^5 - a^5-2ab+b^5

= a^5- a^5+b^5+b^5+2ab -2ab

= 2b^5
2006-10-14 6:03 pm
用列表做 :
(a+b)^5-(a-b)^5=?

a^   5a^4b   a^3b^2   a^2b^3   ab^4   b^5
+1    +5    +10    +10    +5    +1
-1    +5    -10     +10    -5    +1
------------------------------
0    +10    +0    +20    +0    +2

(a+b)^5-(a-b)^5
= 10+a^4b+20a^2b^3+2b^5
2006-10-14 5:56 pm
Make use of X^5 - Y^5 = (X-Y)(X^4 + X^3Y + X2Y^2 + XY^3 + Y^4)

(a+b)^5-(a-b)^5
=((a+b)-(a-b))((a+b)^4 + (a+b)^3(a-b) + (a+b)^2(a-b)^2 + (a+b)(a-b)^3 + (a-b)^4)
=2b((a+b)^4 + (a+b)^3(a-b) + (a+b)^2(a-b)^2 + (a+b)(a-b)^3 + (a-b)^4)


收錄日期: 2021-04-12 22:56:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061014000051KK00984

檢視 Wayback Machine 備份